Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters








Language
Year range
1.
Rev. bras. oftalmol ; 80(5): e0034, 2021. tab, graf
Article in English | LILACS | ID: biblio-1341156

ABSTRACT

ABSTRACT Objective To compare the performance of Sanders-Retzlaff-Kraft/Theoretical, Hoffer Q, Barrett Universal II, Kane, and Hill-radial basis function formulas to calculate intraocular lens power in eyes with normal axial length, in terms of predicting target refraction by using partial coherence interferometry technology. Methods Phacoemulsification and intraocular lens implantation were performed in 135 eyes of 135 patients with an axial length between 22 and 24.5 mm. Axial length, keratometry, and anterior chamber depth were measured by intraocular lens Master 500. Sanders-Retzlaff-Kraft/Theoretical, Hoffer Q, Barrett Universal II, Kane, and Hill-radial basis function formulas were used for intraocular lens power calculations. The difference between the expected postoperative refraction and the mean absolute prediction error was calculated for each eye. Statistical significance was evaluated at the level of p<0.05. Results The study included 135 subjects. The mean axial length, anterior chamber depth, keratometry, and intraocular lens power were 23.2±1.2 (22 to 24.5) mm, 3.2±0.4 (2.4 to 4.4) mm, 43.5±1.5 (40.8 to 46.2) diopter, 21.5±1.8 (18.5 to 25.5) diopter, respectively. The mean absolute prediction error for Sanders-Retzlaff-Kraft/Theoretical, Hoffer Q, Barrett Universal II, Kane, and Hill-radial basis function was 0.306±0.291, 0.312±0.257, 0.314±0.268, 0.299±0.206 and 0.308±0.280, respectively (p>0.05). Conclusion The study showed the third-generation (Sanders-Retzlaff-Kraft/Theoretical and Hoffer Q), fourth-generation (Barrett Universal II) and new-generation (Kane and Hill-radial basis function) intraocular lens power calculation formulas had similar performances regarding calculation of intraocular lens power to predict target refraction after phacoemulsification in eyes with normal axial length.


RESUMO Objetivo Comparar o desempenho das fórmulas Sanders-Retzlaff-Kraft/Teórica, Hoffer Q, Barrett Universal II, Kane, e Hill-radial basis function (RBF) para cálculo de poder dióptrico das lentes intraoculares, em olhos com comprimento axial normal, em termos de predição da refração alvo, utilizando a tecnologia de interferometria de coerência parcial. Métodos Facoemulsificação e implante de lentes intraoculares foram realizados em 135 olhos de 135 pacientes com comprimento axial entre 22 e 24.5 mm. Comprimento axial, ceratometria, e profundidade da câmara anterior foram medidos por lente intraocular Master 500. As fórmulas Sanders-Retzlaff-Kraft/Teórica, Hoffer Q, Barrett Universal II, Kane, e Hill-radial basis function foram empregadas para cálculo de poder dióptrico das lentes intraoculares. A diferença entre a refração esperada no pós-operatório e a média dos erros absolutos preditivos foi calculada para cada olho. Os valores de p<0,05 foram considerados estatisticamente significativos. Resultados O estudo incluiu 135 sujeitos. As médias de comprimento axial, profundidade da câmara anterior, ceratometria, e poder dióptrico das lentes intraoculares foram 23,2±1,2 (22 a 24,5) mm, 3,2±0,4 (2,4 a 4,4) mm, 43,5±1,5 (40,8 a 46,2) dioptria, 21,5±1,8 (18,5 a 25,5) dioptria, respectivamente. A média de erro absoluto preditivo para as fórmulas Sanders-Retzlaff-Kraft/Teórica, Hoffer Q, Barrett Universal II, Kane, e Hill-radial basis function foi 0,306±0,291, 0,312±0,257, 0,314±0,268, 0,299±0,206 e 0,308±0,280, respectivamente (p>0,05). Conclusão O estudo mostrou que as fórmulas de terceira geração (Sanders-Retzlaff-Kraft/Teórica e Hoffer Q), de quarta geração (Barrett Universal II) e as da nova geração (Kane e Hill-radial basis function) para cálculo de poder dióptrico das lentes intraoculares, têm desempenhos semelhantes para cálculo do poder dióptrico das lentes intraoculares, para predizer a refração alvo após facoemulsificação em olhos com comprimento axial normal.


Subject(s)
Humans , Biometry/methods , Phacoemulsification , Lens Implantation, Intraocular , Lenses, Intraocular , Refraction, Ocular/physiology , Cross-Sectional Studies , Axial Length, Eye , Observational Study
SELECTION OF CITATIONS
SEARCH DETAIL